p-group, metabelian, nilpotent (class 2), monomial
Aliases: C42.693C23, C4.1692+ (1+4), C8⋊6D4⋊40C2, C4⋊C8⋊91C22, (C4×C8)⋊60C22, (C4×D4).35C4, (C2×C4)⋊4M4(2), C24.86(C2×C4), C22⋊C8⋊46C22, (C2×C4).672C24, (C2×C8).433C23, C42.223(C2×C4), (C22×D4).44C4, C4.15(C2×M4(2)), C24.4C4⋊36C2, (C4×D4).299C22, C42.12C4⋊53C2, C2.28(Q8○M4(2)), (C2×M4(2))⋊46C22, (C22×C4).940C23, (C23×C4).531C22, C23.106(C22×C4), C22.196(C23×C4), (C2×C42).782C22, C22.29(C2×M4(2)), C2.20(C22×M4(2)), C2.46(C22.11C24), (C2×C4×D4).78C2, (C2×C4⋊C4).78C4, C4⋊C4.230(C2×C4), (C2×D4).236(C2×C4), C22⋊C4.78(C2×C4), (C2×C22⋊C4).52C4, (C22×C4).353(C2×C4), (C2×C4).298(C22×C4), SmallGroup(128,1707)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Subgroups: 388 in 226 conjugacy classes, 134 normal (16 characteristic)
C1, C2 [×3], C2 [×6], C4 [×6], C4 [×7], C22, C22 [×2], C22 [×22], C8 [×8], C2×C4 [×2], C2×C4 [×12], C2×C4 [×17], D4 [×8], C23, C23 [×4], C23 [×8], C42 [×4], C22⋊C4 [×8], C4⋊C4 [×4], C2×C8 [×8], M4(2) [×8], C22×C4 [×3], C22×C4 [×10], C22×C4 [×4], C2×D4 [×4], C2×D4 [×4], C24 [×2], C4×C8 [×4], C22⋊C8 [×12], C4⋊C8 [×4], C2×C42, C2×C22⋊C4 [×2], C2×C4⋊C4, C4×D4 [×8], C2×M4(2) [×8], C23×C4 [×2], C22×D4, C24.4C4 [×4], C42.12C4 [×2], C8⋊6D4 [×8], C2×C4×D4, C42.693C23
Quotients:
C1, C2 [×15], C4 [×8], C22 [×35], C2×C4 [×28], C23 [×15], M4(2) [×4], C22×C4 [×14], C24, C2×M4(2) [×6], C23×C4, 2+ (1+4) [×2], C22.11C24, C22×M4(2), Q8○M4(2), C42.693C23
Generators and relations
G = < a,b,c,d,e | a4=b4=d2=1, c2=b, e2=a2, ab=ba, ac=ca, dad=a-1, ae=ea, bc=cb, bd=db, be=eb, dcd=b2c, ece-1=a2c, ede-1=a2d >
(1 19 27 10)(2 20 28 11)(3 21 29 12)(4 22 30 13)(5 23 31 14)(6 24 32 15)(7 17 25 16)(8 18 26 9)
(1 3 5 7)(2 4 6 8)(9 11 13 15)(10 12 14 16)(17 19 21 23)(18 20 22 24)(25 27 29 31)(26 28 30 32)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 27)(2 32)(3 29)(4 26)(5 31)(6 28)(7 25)(8 30)(9 13)(11 15)(18 22)(20 24)
(1 14 27 23)(2 24 28 15)(3 16 29 17)(4 18 30 9)(5 10 31 19)(6 20 32 11)(7 12 25 21)(8 22 26 13)
G:=sub<Sym(32)| (1,19,27,10)(2,20,28,11)(3,21,29,12)(4,22,30,13)(5,23,31,14)(6,24,32,15)(7,17,25,16)(8,18,26,9), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,27)(2,32)(3,29)(4,26)(5,31)(6,28)(7,25)(8,30)(9,13)(11,15)(18,22)(20,24), (1,14,27,23)(2,24,28,15)(3,16,29,17)(4,18,30,9)(5,10,31,19)(6,20,32,11)(7,12,25,21)(8,22,26,13)>;
G:=Group( (1,19,27,10)(2,20,28,11)(3,21,29,12)(4,22,30,13)(5,23,31,14)(6,24,32,15)(7,17,25,16)(8,18,26,9), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,27)(2,32)(3,29)(4,26)(5,31)(6,28)(7,25)(8,30)(9,13)(11,15)(18,22)(20,24), (1,14,27,23)(2,24,28,15)(3,16,29,17)(4,18,30,9)(5,10,31,19)(6,20,32,11)(7,12,25,21)(8,22,26,13) );
G=PermutationGroup([(1,19,27,10),(2,20,28,11),(3,21,29,12),(4,22,30,13),(5,23,31,14),(6,24,32,15),(7,17,25,16),(8,18,26,9)], [(1,3,5,7),(2,4,6,8),(9,11,13,15),(10,12,14,16),(17,19,21,23),(18,20,22,24),(25,27,29,31),(26,28,30,32)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,27),(2,32),(3,29),(4,26),(5,31),(6,28),(7,25),(8,30),(9,13),(11,15),(18,22),(20,24)], [(1,14,27,23),(2,24,28,15),(3,16,29,17),(4,18,30,9),(5,10,31,19),(6,20,32,11),(7,12,25,21),(8,22,26,13)])
Matrix representation ►G ⊆ GL6(𝔽17)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 2 | 0 | 0 |
0 | 0 | 16 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 2 |
0 | 0 | 0 | 0 | 16 | 16 |
13 | 0 | 0 | 0 | 0 | 0 |
0 | 13 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
0 | 16 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 15 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 2 |
0 | 0 | 0 | 0 | 0 | 16 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 2 | 0 | 0 |
0 | 0 | 16 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 15 |
0 | 0 | 0 | 0 | 1 | 1 |
G:=sub<GL(6,GF(17))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,16,0,0,0,0,2,16,0,0,0,0,0,0,1,16,0,0,0,0,2,16],[13,0,0,0,0,0,0,13,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[0,4,0,0,0,0,16,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,1,0,0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,15,1,0,0,0,0,0,0,1,0,0,0,0,0,2,16],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,16,0,0,0,0,2,16,0,0,0,0,0,0,16,1,0,0,0,0,15,1] >;
44 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 4A | 4B | 4C | 4D | 4E | ··· | 4N | 4O | 4P | 4Q | 4R | 8A | ··· | 8P |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | 4 | 4 | 4 | 8 | ··· | 8 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 4 | 4 | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 4 | 4 |
type | + | + | + | + | + | + | ||||||
image | C1 | C2 | C2 | C2 | C2 | C4 | C4 | C4 | C4 | M4(2) | 2+ (1+4) | Q8○M4(2) |
kernel | C42.693C23 | C24.4C4 | C42.12C4 | C8⋊6D4 | C2×C4×D4 | C2×C22⋊C4 | C2×C4⋊C4 | C4×D4 | C22×D4 | C2×C4 | C4 | C2 |
# reps | 1 | 4 | 2 | 8 | 1 | 4 | 2 | 8 | 2 | 8 | 2 | 2 |
In GAP, Magma, Sage, TeX
C_4^2._{693}C_2^3
% in TeX
G:=Group("C4^2.693C2^3");
// GroupNames label
G:=SmallGroup(128,1707);
// by ID
G=gap.SmallGroup(128,1707);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,224,253,1430,891,2467,124]);
// Polycyclic
G:=Group<a,b,c,d,e|a^4=b^4=d^2=1,c^2=b,e^2=a^2,a*b=b*a,a*c=c*a,d*a*d=a^-1,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d=b^2*c,e*c*e^-1=a^2*c,e*d*e^-1=a^2*d>;
// generators/relations